Berntzen, L., Johannessen, M. R., & El-gazzar, R. “Smart Cities, Big Data and Smart Decision-making Understanding Big Data in Smart City Applications”, The Twelfth International Conference on Digital Society and EGovernments, c, 7–13, 2018.
Lori S. Ashford, Toshiko Kaneda, and Emmanuel Letouzé, “Demystifying Big Data for Demography and Global Health,” Population Bulletin 76, no. 1, 2022.
Subbotin, A., Aref, S. “Brain drains and brain gain in Russia: Analyzing international migration of researchers by discipline using Scopus bibliometric data 1996–2020,” Scientometrics 126, 7875–7900, 2021. (https://doi.org/10.1007/s11192-021-04091-x)
McGrail, K., Moran, R., O'Keefe, C., Preen, D., Quan, H., Sanmartin, C., Schull, M., Smith, M., Williams, C., Williamson, T., Wyper, G., Moorin, R., Kum, H.-C., Jones, K., Akbari, A., Bennett, T., Boyd, A., Carinci, F., Cui, X., Denaxas, S., Dougall, N., Ford, D., Kirby, R. S. and Kotelchuck, M. “A Position Statement on Population Data Science:: The science of data about people”, International Journal of Population Data Science, 3(1), 2018 (doi: 10.23889/ijpds.v3i1.415).
Sarikaya, A., Correll, M., Bartram, L., Tory, M., & Fisher, D. “What do we talk about when we talk about Dashboards?”, IEEE Transactions on Visualization and Computer Graphics, 3–22, 2019 (
https://doi.org/10.5422/fso/9780823226351.003.0001).
Matheus, R., Janssen, M., & Maheshwari, D. “Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities”, Government Information Quarterly, 37(3), 101284, 2020 (https://doi.org/10.1016/j.giq.2018.01.006).
Arun Mitra,
Biju Soman,
Gurpreet Singh, “An Interactive Dashboard for Real-Time Analytics and Monitoring of COVID-19 Outbreak in India: A proof of Concept”, In proceedings of the 1st Virtual Conference on Implications of Information and Digital Technologies for Development, 2021 (
arXiv:2108.09937).
Louisa Jorm. “Routinely collected data as a strategic resource for research: priorities for methods and workforce”, Public Health Research Practice, 25 (4), 2015 (https://doi.org/10.17061/phrp2541540).
Pan, Y., Tian, Y., Liu, X., Gu, D., & Hua, G. “Urban Big Data and the Development of City Intelligence”, Engineering, 2(2), 171–178, 2016 (https://doi.org/10.1016/J.ENG.2016.02.003)
David J Hand “Statistical challenges of administrative and transaction data. Journal of the Royal Statistical Society: Series A (Statistics in Society)”, 181 (3):555–605, 2018 (https://doi.org/10.1111/rssa.12315)
Kimberlyn M McGrail, Kerina Jones, Ashley Akbari, Tellen D Bennett, Andy Boyd, et al. “A position statement on population data science: The science of data about people”, International Journal of Population Data Science, 3(1), 2018 (https://doi.org/10.23889/ijpds.v3i1.415)
Florian Keusch and Frauke Kreuter “Digital trace data: Modes of data collection, applications, and errors at a glance”, In Handbook of Computational Social Science, Vol 1, pages 100–118. Taylor and Francis, 2021 (https://doi.org/10.4324/9781003024583-8)
Paul Biemer. Errors and inference. In: Ian Foster, Rayid Ghani, Ron S Jarmin, Frauke Kreuter, and Julia Lane, editors, “Big Data and Social Science”, chapter 10, pages 265–297. CRC Press, Boca Raton, 2017 (https://doi.org/10.1201/9781315368238).
Andrew W Brown, Kathryn A Kaiser, and David B Allison. “Issues with data and analyses: Errors, underlying themes, and potential solutions”, Proceedings of the National Academy of Sciences, 115(11):2563–2570, 2018 (
https://doi.org/10.1073/pnas.1708279115).
Winglee M, Valliant R, Scheuren F: “A case study in record linkage”, Survey Methodology, 31 (1): 3-11, 2005.
Emery, J., & Boyle, D. “Data linkage. Australian Family Physician”, 46(8), 615–619, 2017 (https://search.informit.org/doi/10.3316/informit.985328596864810).
Flack, A. Kemp-Casey, N. Wray, “using linked administrative data in clinical trials: A Guide for Clinical Trialists and Researchers”, Australian Clinical Trials Alliance, Retrieved from the ACTA website
www.clinicaltrialsalliance.org.au, 2019.
Kelman CW, Bass AJ, Holman CD. “Research Use of Linked Health Data-A Best Practice Protocol”, Aust N Z J Public Health, 26(3):251-5, 2002.
Karmel R, Anderson P, Gibson D, Peut A, Duckett S, Wells Y. “Empirical Aspects of Record Linkage Across Multiple Data Sets Using Statistical Linkage Keys: The Experience of the PIAC Cohort Study”, BMC Health Serv Res, 2010.
Gill L. “Methods for Automatic Record Matching and Linking and Their Use in National Statistics”, Statistics N, editor. London, 2001.
Caio Moreno, Ramón Alberto Carrasco, Enrique Herrera-Viedma, “Data and Artificial Intelligence Strategy: A Conceptual Enterprise Big Data Cloud Architecture to Enable Market-Oriented Organizations”, International Journal of Interactive Multimedia and Artificial Intelligence, 2019.
Ruggles, S. “Big microdata for population research. Demography”, 51(1), 287–297, 2014.
Baffour, B., King, T. and Valente, P. “The Modern Census: Evolution, Examples and Evaluation”, International Statistical Review, 81: 407-425, 2013 (
https://doi.org/10.1111/insr.12036).
Peter Christen, and Rainer Schnell, “Thirty-three myths and misconceptions about population data: from data capture and processing to linkage”, International Journal of Population Data Science, 2023.
Gartner: Data Management Solutions for Analytics, 2019 (https://www.gartner.com/reviews/customers-choice/datawarehouse-solutio).
Nikhat Akhtar, Nazia Tabassum, Asif Perwej, Yusuf Perwej “Data analytics and visualization using Tableau utilitarian for COVID-19”, Global Journal of Engineering and Technology Advances, 2020
(https://doi.org/10.30574/gjeta.2020.3.2.0029).